티스토리 뷰


원문 및 다른 이미지 : http://navercast.naver.com/contents.nhn?contents_id=822

지난 글에서 프랙탈에 대한 간단한 개요를 중심으로 프랙탈아트 작품을 소개했다면 이번 글에는 좀더 프랙탈에 관한 이야기를 중심으로
작품들을 소개하고자 한다. 프랙탈이 수학적인 요소에서 출발하였으나, 최근 화려한 색과 현란한 모양으로 뭇 디지털 아티스트들의 가슴을
설레게 만들고 있는 것은 사실이다.

프랙탈을 이야기 하다 보면 자주 테셀레이션과 비교 질문을 받곤 한다. 테셀레이션(tessellation)이란, 우리가 흔히 볼 수 있는 유리창문의 창살 및 욕실이나 마루 바닥에 깔려 있는 타일과 같이 틈이나 교차점 없이 평면이나 공간을 도형으로 덮는 형태(모양)를 말한다.
대표적인 테셀레이션 작가로는 모리츠 코르넬리스 에셔(Maurits Cornelis Escher) 이다. 에셔는 수학적 소재라 할 수 있는 테셀레이션을
예술적 경지로 발전시켰다. 아래의 테셀레이션 그림이나(좌) 혹은 에셔의 작품을 무한대로 확대(Zoom In) 하다 보면 원래의 이미지나 도형은
사라지게 된다. 이것은 자기 유사성을 가진 프랙탈(아래 작품 오른쪽)과는 다른 것이다. 프랙탈은 아래 프랙탈작품(우)에서 보듯이 무한히
확대해도 작은 소용돌이가 지속적으로 나타나게 되므로 이미지 형태가 변하지 않는다.

테셀레이션 이미지

프랙탈 이미지

프랙탈의 창시자는 IBM의 토머스 왓슨(Thomas J. Watson)연구센터의 만델브로트(Benoit Mandelbrot)이다. 그는 Fractal(프랙탈)이라는 말을 

만들어 낸 장본인이다. 그는 논문 “The Fractal Geometry of Nature”에서 프랙탈 인식에 관한 간단한 질문을 내놓았다. "영국의 해안선 길이는 얼마나 될까?" 이 질문은 언뜻 보기에는 넌센스 같지만, 이 단순한 질문은 실로 심오한 의문을 제기한 것이다. 그러면 만델브로트가 제시한 영국의 해안선은 얼마나 될까? 아래의 그림은 영국의 해안선을 200마일 단위와 25마일 단위로 잰 것이다. 25마일 단위로 재면 200마일로 단위로 잰 것에 비해서 측정된 해안선의 길이가 길어진다. 그 이유는 해안선은 자세히 보면 볼수록 복잡하기 때문이다.
만일 더 작은 단위로 해안선을 재면 어떻게 될까? 예컨대, 1cm단위로 잰다면 어떨까? 아니, 원자 한 개 길이만한 자로 잰다면 어떨까?


영국해안선의 길이는 세밀하게 측정할수록 커진다.
<출처: 만델브로트. "The Fractal Geometry of Nature">

만일 1cm 길이의 측정단위를 사용하여 전 해안선을 기다시피 하며 세밀하게 측정 할 경우, 모든 해안가의 짧은 곡선, 해안 바위들의 굴곡 하나하나가 합산 되어 해안선 측정 값은 엄청나게 증가되어 천문학적인 수치가 나올 것이다. 측정단위에 의해 합산된 곡선의 길이가 단위를 작게 할수록 무작위로 커진다면 그 곡선은 프랙탈 곡선이라고 한다. 따라서 영국의 해안선은 프랙탈이다. 영국의 해안선이 프랙탈이라면 우리가 생활하고 있는 주위의 다른 곳에서도 프랙탈을 쉽게 찾을 수 있다. 구름, 산, 나무, 심지어 사람의 뇌의 주름 등에도.
필자는 이를 바탕으로 이 글에서도 자연 속에 나타나는 프랙탈 작품을 소개하고자 한다.

원문 및 다른 이미지 : 
http://navercast.naver.com/contents.nhn?contents_id=822 


728x90

'Inspitarion > 미학' 카테고리의 다른 글

네이버 캐스트 : 바코드  (0) 2012.01.20
네이버 캐스트 : 프랙탈!  (0) 2012.01.20
모더니즘에 대하여.  (0) 2011.12.19